Literatur
Schlüsselwörter
Statistik, Prognose, Modellierung, R, Datenanalyse, Regression
Aden-Buie, G. (2018). Wide and long data. https://www.garrickadenbuie.com/project/tidyexplain/
Ainali. (2007). Standard deviation diagram micro. https://commons.wikimedia.org/w/index.php?curid=3141713
Anscombe, F. J. (1973). Graphs in statistical analysis. The American
Statistician, 27(1), 17–21.
Berger, G. (2019, December 10). The Jobs of
Tomorrow: LinkedIn’s 2020 Emerging Jobs
Report. https://www.linkedin.com/blog/member/career/the-jobs-of-tomorrow-linkedins-2020-emerging-jobs-report
Bortz, J., & Schuster, C. (2010). Statistik für
Human- und Sozialwissenschaftler.
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12770-0
Bowne-Anderson, H. (2018). What Data Scientists Really Do,
According to 35 Data Scientists. Harvard
Business Review. https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists
Broman, K. W., & Woo, K. H. (2018). Data Organization
in Spreadsheets. The American Statistician,
72(1), 2–10. https://doi.org/10.1080/00031305.2017.1375989
Bundesamt, S. (2023-003-272023-003-27). Körpermaße nach
Altersgruppen und Geschlecht. Statistisches Bundesamt. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Gesundheitszustand-Relevantes-Verhalten/Tabellen/liste-koerpermasse.html
Bundesbank, D. (2023). Household wealth and finances in
Germany: Results of the 2021 household wealth
survey. Deutsche Bundesbank. https://www.bundesbank.de/resource/blob/908924/3ef9d9a4eaeae8a8779ccec3ac464970/mL/2023-04-vermoegensbefragung-data.pdf
Cetinkaya-Rundel, M., & Hardin, J. (2021). Introduction to
Modern Statistics. https://openintro-ims.netlify.app/
Cmglee. (2015). English: Geometric visualisation of the
variance of the example distribution (2, 4, 4, 4, 5, 5, 7, 9) on
w:Standard deviation. https://commons.wikimedia.org/w/index.php?curid=39472834
Cohen, J. (1992). A power primer. Psychological Bulletin,
112(1), 155–159.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003).
Applied multiple regression/correlation analysis for the behavioral
sciences, 3rd ed (pp. xxviii, 703). Lawrence Erlbaum Associates
Publishers.
Downey, A. (2023). Probably overthinking it: How to use data to
answer questions, avoid statistical traps, and make better
decisions. The University of Chicago Press.
Earth, H. terrae;. K. links:. L. D. von B. (2021). Deutsch:
Fünfjährig gemittelte Abweichung der
Lufftemperatur in Deutschland vom langjährigem
Mittel 1951 bis 1980. https://commons.wikimedia.org/wiki/File:%C3%84nderung_der_Lufttemperatur_in_Deutschland.gif
Fisher, D., & Meyer, M. (2018). Making data visual: A practical
guide to using visualization for insight (First edition). O’Reilly.
Fitzmaurice, G. (2017). Same Stats, Different
Graphs: Generating Datasets with Varied
Appearance and Identical Statistics through
Simulated Annealing. Autodesk Research. https://www.research.autodesk.com/publications/same-stats-different-graphs/
flaticon. (2024). Professor. https://www.flaticon.com/de/kostenlose-icons/professor
Forum, W. E. (2020). The Future of Jobs
Report 2020. World Economic Forum. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Goren, A., Vaño-Galván, S., Wambier, C. G., McCoy, J., Gomez-Zubiaur,
A., Moreno-Arrones, O. M., Shapiro, J., Sinclair, R. D., Gold, M. H.,
Kovacevic, M., Mesinkovska, N. A., Goldust, M., & Washenik, K.
(2020). A preliminary observation: Male pattern hair loss
among hospitalized COVID-19 patients in Spain
– A potential clue to the role of androgens in
COVID-19 severity. Journal of Cosmetic
Dermatology, 19(7), 1545–1547. https://doi.org/10.1111/jocd.13443
Haug, S., Castro, R. P., Kwon, M., Filler, A., Kowatsch, T., &
Schaub, M. P. (2015). Smartphone use and smartphone addiction among
young people in Switzerland. Journal of Behavioral
Addictions, 4(4), 299–307. https://doi.org/10.1556/2006.4.2015.037
Horst, A. (2023). Tidy Data. https://allisonhorst.com/
Horst, A. (2024). Statistics Artwork. https://allisonhorst.com/
Hou, J., Walsh, P. P., & Zhang, J. (2015). The dynamics of
Human Development Index. The Social Science
Journal, 52(3), 331–347. https://doi.org/10.1016/j.soscij.2014.07.003
Ichihara, Y. G., Okabe, M., Iga, K., Tanaka, Y., Musha, K., & Ito,
K. (2008). Color universal design: The selection of four easily
distinguishable colors for all color vision types. Color
Imaging XIII: Processing,
Hardcopy, and Applications,
6807, 206–213. https://doi.org/10.1117/12.765420
imgflip. (2024a). Imageflip Meme. https://imgflip.com
imgflip. (2024b). Yoda Meme. https://imgflip.com
International, T. (2017, January 25). Corruption Perceptions
Index 2016. Transparency.org. https://www.transparency.org/en/news/corruption-perceptions-index-2016
Ismay, C., & Kim, A. Y.-S. (2020). Statistical inference via
data science: A ModernDive into R and the
Tidyverse. CRC Press / Taylor & Francis Group. https://moderndive.com/
Kaplan, D. T. (2009). Statistical modeling: A fresh approach.
CreateSpace. https://dtkaplan.github.io/SM2-bookdown/
Kwon, M., Kim, D.-J., Cho, H., & Yang, S. (2013). The smartphone
addiction scale: Development and validation of a short version for
adolescents. PloS One, 8(12), e83558. https://doi.org/10.1371/journal.pone.0083558
Lalwani, P., Mishra, M. K., Chadha, J. S., & Sethi, P. (2022).
Customer churn prediction system: A machine learning approach.
Computing, 104(2), 271–294. https://doi.org/10.1007/s00607-021-00908-y
Lovett, M. C., & Greenhouse, J. B. (2000). Applying Cognitive
Theory to Statistics Instruction. The American
Statistician, 54(3), 196–206. https://doi.org/10.1080/00031305.2000.10474545
Lyon, A. (2014). Why are Normal Distributions Normal?
The British Journal for the Philosophy of Science,
65(3), 621–649. https://doi.org/10.1093/bjps/axs046
MacKay, R. J., & Oldford, R. W. (2000). Scientific
Method, Statistical Method and the
Speed of Light. Statistical Science,
15(3), 254–278. https://doi.org/10.1214/ss/1009212817
Maphry. (2009). Seesaw with mean. https://commons.wikimedia.org/w/index.php?curid=79390659
Marks‐Anglin, A., & Chen, Y. (2020). A historical review of
publication bias. Research Synthesis Methods, 11(6),
725–742. https://doi.org/10.1002/jrsm.1452
Matthews, R. (2000). Storks Deliver Babies (p= 0.008).
Teaching Statistics, 22(2), 36–38. https://doi.org/10.1111/1467-9639.00013
Menk. (2014, July 29). Linear regression. https://texample.net/tikz/examples/linear-regression/
Messerli, F. H. (2012). Chocolate Consumption,
Cognitive Function, and Nobel Laureates.
New England Journal of Medicine, 367(16), 1562–1564.
https://doi.org/10.1056/NEJMon1211064
Mittag, H.-J., & Schüller, K. (2020). Statistik: Eine Einführung
mit interaktiven Elementen. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-61912-4
Mulukom, V. van, Muzzulini, B., Rutjens, B., Lissa, C. J. van, &
Farias, M. (2020). Psychological impact of COVID-19
pandemic. https://doi.org/10.17605/OSF.IO/TSJNB
Obels, P., Lakens, D., Coles, N. A., Gottfried, J., & Green, S. A.
(2020). Analysis of Open Data and Computational
Reproducibility in Registered Reports in
Psychology. Advances in Methods and Practices in
Psychological Science, 3(2), 229–237. https://doi.org/10.1177/2515245920918872
Oestreich, M., & Romberg, O. (2014). Keine Panik vor Statistik!:
Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge.
Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-04605-7
Okabe, M., & Ito, K. (2023). Color Universal Design
(CUD) / Colorblind Barrier Free. https://jfly.uni-koeln.de/color/
Pearl, J., & Mackenzie, D. (2018). The book of why: The new
science of cause and effect (First edition). Basic Books.
Plesser, H. E. (2018). Reproducibility vs. Replicability:
A Brief History of a Confused Terminology.
Frontiers in Neuroinformatics, 11, 76. https://doi.org/10.3389/fninf.2017.00076
Poldrack, R. (2022). Statistical Thinking for the 21st
Century. https://statsthinking21.github.io/statsthinking21-core-site/index.html
Poldrack, R. A. (2023). Statistical thinking: Analyzing data in an
uncertain world. Princeton University Press. https://statsthinking21.github.io/statsthinking21-core-site/
Roser, M., Appel, C., & Ritchie, H. (2013). Human height. Our
World in Data. https://ourworldindata.org/human-height
Rothstein, H. R. (2014). Publication Bias. In Wiley
StatsRef: Statistics Reference Online.
John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07071
Sauer, S. (2019). Moderne Datenanalyse mit R: Daten einlesen,
aufbereiten, visualisieren und modellieren (1. Auflage 2019).
Springer. https://www.springer.com/de/book/9783658215866
Scherer, C., Radchuk, V., Staubach, C., Müller, S., Blaum, N., Thulke,
H., & Kramer‐Schadt, S. (2019). Seasonal host life‐history processes
fuel disease dynamics at different spatial scales. Journal of Animal
Ecology, 88(11), 1812–1824. https://doi.org/10.1111/1365-2656.13070
Schwaiger, E., & Tahir, R. (2022). The impact of nomophobia and
smartphone presence on fluid intelligence and attention.
Cyberpsychology: Journal of Psychosocial Research on
Cyberspace, 16(1). https://doi.org/10.5817/CP2022-1-5
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011).
False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis
Allows Presenting Anything as Significant.
Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Stigler, S. M. (2016). The seven pillars of statistical wisdom.
Harvard University Press.
van Panhuis, W. G., Grefenstette, J., Jung, S. Y., Chok, N. S., Cross,
A., Eng, H., Lee, B. Y., Zadorozhny, V., Brown, S., Cummings, D., &
Burke, D. S. (2013). Contagious Diseases in the
United States from 1888 to the Present.
New England Journal of Medicine, 369(22), 2152–2158.
https://doi.org/10.1056/NEJMms1215400
Ward, A. F., Duke, K., Gneezy, A., & Bos, M. W. (2017). Brain
Drain: The Mere Presence of One’s
Own Smartphone Reduces Available Cognitive Capacity.
Journal of the Association for Consumer Research,
2(2), 140–154. https://doi.org/10.1086/691462
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis
(Second edition). Springer.
Wickham, H. (2023). Tidy-Data-Sinnbild. https://r4ds.hadley.nz/data-tidy#fig-tidy-structure
Wickham, H., & Grolemund, G. (2018). R für Data Science: Daten
importieren, bereinigen, umformen, modellieren und visualisieren
(F. Langenau, Trans.; 1. Auflage). O’Reilly. https://r4ds.had.co.nz/index.html
Wilke, C. (2019). Fundamentals of data visualization: A primer on
making informative and compelling figures (First edition). O’Reilly
Media. https://clauswilke.com/dataviz/
Wilke, C. (2024). Wilkelab/practicalgg. Wilke Lab. https://github.com/wilkelab/practicalgg
(Original work published 2019)
Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based
personality judgments are more accurate than those made by humans.
Proceedings of the National Academy of Sciences,
112(4), 1036–1040. https://doi.org/10.1073/pnas.1418680112