Literatur
Schlüsselwörter
Statistik, Prognose, Modellierung, R, Datenanalyse, Regression
Ainali. (2007). Standard deviation diagram micro [Artwork]. https://commons.wikimedia.org/w/index.php?curid=3141713
Anscombe, F. J. (1973). Graphs in statistical analysis. The American
Statistician, 27(1), 17–21.
Arad, C. (2024, June 5). Kylian Mbappe: Gehalt und Vermögen im
Überblick (2024). ftd.de. https://www.ftd.de/vermoegen/mbappe-gehalt-vermoegen/
Barrett, M. (2021). Ggokabeito: ’Okabe-Ito’
Scales for ’Ggplot2’ and ’ggraph’ [Manual]. https://CRAN.R-project.org/package=ggokabeito
Berger, G. (2019, December 10). The Jobs of
Tomorrow: LinkedIn’s 2020 Emerging Jobs
Report. https://www.linkedin.com/blog/member/career/the-jobs-of-tomorrow-linkedins-2020-emerging-jobs-report
Bortz, J., & Schuster, C. (2010). Statistik für
Human- und Sozialwissenschaftler.
Springer. https://doi.org/10.1007/978-3-642-12770-0
Bowne-Anderson, H. (2018). What Data Scientists Really Do,
According to 35 Data Scientists. Harvard
Business Review. https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists
Broman, K. W., & Woo, K. H. (2018). Data Organization
in Spreadsheets. The American Statistician,
72(1), 2–10. https://doi.org/10.1080/00031305.2017.1375989
Bundesamt, S. (2023-003-272023-003-27). Körpermaße nach
Altersgruppen und Geschlecht. Statistisches Bundesamt. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Gesundheitszustand-Relevantes-Verhalten/Tabellen/liste-koerpermasse.html
Bundesbank, D. (2023). Household wealth and finances in
Germany: Results of the 2021 household wealth
survey. Deutsche Bundesbank. https://www.bundesbank.de/resource/blob/908924/3ef9d9a4eaeae8a8779ccec3ac464970/mL/2023-04-vermoegensbefragung-data.pdf
Cetinkaya-Rundel, M., & Hardin, J. (2021). Introduction to
Modern Statistics. https://openintro-ims.netlify.app/
Çetinkaya-Rundel, M., Diez, D., Bray, A., Kim, A. Y., Baumer, B., Ismay,
C., Paterno, N., & Barr, C. (2024). Openintro: Datasets and
supplemental functions from ’OpenIntro’ textbooks and labs. https://CRAN.R-project.org/package=openintro
Cmglee. (2015). English: Geometric visualisation of the
variance of the example distribution (2, 4, 4, 4, 5, 5, 7, 9) on
w:Standard deviation. https://commons.wikimedia.org/w/index.php?curid=39472834
Cohen, J. (1992). A power primer. Psychological Bulletin,
112(1), 155–159.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003).
Applied multiple regression/correlation analysis for the behavioral
sciences, 3rd ed. Lawrence Erlbaum.
DenisBoigelot. (2011). English: Redesign
File:Correlation_examples.png using vector
graphics (SVG file) [Artwork]. https://commons.wikimedia.org/w/index.php?curid=15165296
Downey, A. (2023). Probably overthinking it: How to use data to
answer questions, avoid statistical traps, and make better
decisions. The University of Chicago Press.
Earth, H. terrae;. K. links:. L. D. von B. (2021). Deutsch:
Fünfjährig gemittelte Abweichung der
Lufftemperatur in Deutschland vom langjährigem
Mittel 1951 bis 1980. https://commons.wikimedia.org/wiki/File:%C3%84nderung_der_Lufttemperatur_in_Deutschland.gif
Fisher, D., & Meyer, M. (2018). Making data visual: A practical
guide to using visualization for insight. O’Reilly.
Fitzmaurice, G. (2017). Same Stats, Different
Graphs: Generating Datasets with Varied
Appearance and Identical Statistics through
Simulated Annealing. Autodesk Research. https://www.research.autodesk.com/publications/same-stats-different-graphs/
flaticon. (2024). Professor [Artwork]. https://www.flaticon.com/de/kostenlose-icons/professor
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Goren, A., Vaño-Galván, S., Wambier, C. G., McCoy, J., Gomez-Zubiaur,
A., Moreno-Arrones, O. M., Shapiro, J., Sinclair, R. D., Gold, M. H.,
Kovacevic, M., Mesinkovska, N. A., Goldust, M., & Washenik, K.
(2020). A preliminary observation: Male pattern hair loss
among hospitalized COVID-19 patients in Spain
– A potential clue to the role of androgens in
COVID-19 severity. Journal of Cosmetic
Dermatology, 19(7), 1545–1547. https://doi.org/10.1111/jocd.13443
Haug, S., Castro, R. P., Kwon, M., Filler, A., Kowatsch, T., &
Schaub, M. P. (2015). Smartphone use and smartphone addiction among
young people in Switzerland. Journal of Behavioral
Addictions, 4(4), 299–307. https://doi.org/10.1556/2006.4.2015.037
Hornik, K., Ligges, U., & Zeileis, A. (2023). Changes on CRAN.
The R Journal, 15, 295–296.
Horst, A. (2023). Tidy Data [Artwork]. https://allisonhorst.com/
Horst, A. (2024). Statistics Artwork [Artwork]. https://allisonhorst.com/
Hou, J., Walsh, P. P., & Zhang, J. (2015). The dynamics of
Human Development Index. The Social Science
Journal, 52(3), 331–347. https://doi.org/10.1016/j.soscij.2014.07.003
Ichihara, Y. G., Okabe, M., Iga, K., Tanaka, Y., Musha, K., & Ito,
K. (2008). Color universal design: The selection of four easily
distinguishable colors for all color vision types. Color
Imaging XIII: Processing,
Hardcopy, and Applications,
6807, 206–213. https://doi.org/10.1117/12.765420
imgflip. (2024a). Imageflip Bill Gates Meme
[Artwork]. https://imgflip.com
imgflip. (2024b). Imageflip Kermit Meme [Artwork].
https://imgflip.com
imgflip. (2024c). Imageflip Meme [Artwork]. https://imgflip.com
imgflip. (2024d). Imageflip Tom Cruise Meme
[Artwork]. https://imgflip.com
imgflip. (2024e). Yoda Jealous Girl Friend Meme
[Artwork]. https://imgflip.com
International, T. (2017, January 25). Corruption Perceptions
Index 2016. Transparency.org. https://www.transparency.org/en/news/corruption-perceptions-index-2016
Ismay, C., & Kim, A. Y.-S. (2020). Statistical inference via
data science: A ModernDive into R and the
Tidyverse. CRC Press / Taylor & Francis Group. https://moderndive.com/
Kaplan, D. T. (2009). Statistical modeling: A fresh approach.
CreateSpace. https://dtkaplan.github.io/SM2-bookdown/
Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits
and attributes are predictable from digital records of human behavior.
Proceedings of the National Academy of Sciences,
110(15), 5802–5805. https://doi.org/10.1073/pnas.1218772110
Kwon, M., Kim, D.-J., Cho, H., & Yang, S. (2013). The smartphone
addiction scale: Development and validation of a short version for
adolescents. PloS One, 8(12), e83558. https://doi.org/10.1371/journal.pone.0083558
Lalwani, P., Mishra, M. K., Chadha, J. S., & Sethi, P. (2022).
Customer churn prediction system: A machine learning approach.
Computing, 104(2), 271–294. https://doi.org/10.1007/s00607-021-00908-y
Lieberoth, A., Rasmussen, J., Stoeckli, S., Tran, T., Ćepulić, D.-B.,
Han, H., Lin, S.-Y., Tuominen, J., Travaglino, G. A., & Vestergren,
S. (2020). COVIDiSTRESS global survey. https://doi.org/10.17605/OSF.IO/Z39US
Lieberoth, A., Rasmussen, J., Stoeckli, S., Tran, T., Ćepulić, D.-B.,
Han, H., Lin, S.-Y., Tuominen, J., Travaglino, G., & Vestergren, S.
(2022). COVIDiSTRESS global survey. https://doi.org/10.17605/OSF.IO/Z39US
Lovett, M. C., & Greenhouse, J. B. (2000). Applying Cognitive
Theory to Statistics Instruction. The American
Statistician, 54(3), 196–206. https://doi.org/10.1080/00031305.2000.10474545
Lyon, A. (2014). Why are Normal Distributions Normal?
The British Journal for the Philosophy of Science,
65(3), 621–649. https://doi.org/10.1093/bjps/axs046
M7. (2004). Savinelli’s Italian smoking pipe. https://commons.wikimedia.org/wiki/File:Pipa_savinelli.jpg
MacKay, R. J., & Oldford, R. W. (2000). Scientific
Method, Statistical Method and the
Speed of Light. Statistical Science,
15(3), 254–278. https://doi.org/10.1214/ss/1009212817
Maphry. (2009). Seesaw with mean [Artwork]. https://commons.wikimedia.org/w/index.php?curid=79390659
Marks-Anglin, Arielle and Chen, Yong. (2020). A historical review of
publication bias. Research Synthesis Methods, 11(6),
725–742. https://doi.org/10.1002/jrsm.1452
Matthews, R. (2000). Storks Deliver Babies (p= 0.008).
Teaching Statistics, 22(2), 36–38. https://doi.org/10.1111/1467-9639.00013
Menk. (2014, July 29). Linear regression. https://texample.net/tikz/examples/linear-regression/
Messerli, F. H. (2012). Chocolate Consumption,
Cognitive Function, and Nobel Laureates.
New England Journal of Medicine, 367(16), 1562–1564.
https://doi.org/10.1056/NEJMon1211064
Mittag, H.-J., & Schüller, K. (2020). Statistik: Eine Einführung
mit interaktiven Elementen. Springer. https://doi.org/10.1007/978-3-662-61912-4
Moore, B. (2015, April 9). Recreating the vaccination heatmaps in
R. Benomics. https://benjaminlmoore.wordpress.com/2015/04/09/recreating-the-vaccination-heatmaps-in-r/
Mulukom, V. van, Muzzulini, B., Rutjens, B., Lissa, C. J. van, &
Farias, M. (2020). Psychological impact of COVID-19
pandemic. https://doi.org/10.17605/OSF.IO/TSJNB
Obels, P., Lakens, D., Coles, N. A., Gottfried, J., & Green, S. A.
(2020). Analysis of Open Data and Computational
Reproducibility in Registered Reports in
Psychology. Advances in Methods and Practices in
Psychological Science, 3(2), 229–237. https://doi.org/10.1177/2515245920918872
Oestreich, M., & Romberg, O. (2014). Keine Panik vor Statistik!:
Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge.
Springer. https://doi.org/10.1007/978-3-658-04605-7
Okabe, M., & Ito, K. (2023). Color Universal Design
(CUD) / Colorblind Barrier Free. https://jfly.uni-koeln.de/color/
Pearl, J., & Mackenzie, D. (2018). The book of why: The new
science of cause and effect. Basic Books.
Plesser, H. E. (2018). Reproducibility vs. Replicability:
A Brief History of a Confused Terminology.
Frontiers in Neuroinformatics, 11, 76. https://doi.org/10.3389/fninf.2017.00076
Poldrack, R. A. (2023). Statistical thinking: Analyzing data in an
uncertain world. Princeton University Press. https://statsthinking21.github.io/statsthinking21-core-site/
Roser, M., Appel, C., & Ritchie, H. (2013). Human height. Our
World in Data. https://ourworldindata.org/human-height
Rothstein, H. R. (2014). Publication Bias. In Wiley
StatsRef: Statistics Reference Online.
John Wiley. https://doi.org/10.1002/9781118445112.stat07071
Sauer, S. (2017). Dataset ’predictors of performance in stats
test’ [Data set]. Open Science Framework. https://doi.org/10.17605/OSF.IO/SJHUY
Sauer, S. (2019). Moderne Datenanalyse mit R: Daten einlesen,
aufbereiten, visualisieren und modellieren. Springer. https://www.springer.com/de/book/9783658215866
Scherer, C., Radchuk, V., Staubach, C., Müller, S., Blaum, N., Thulke,
H., & Kramer‐Schadt, S. (2019). Seasonal host life‐history processes
fuel disease dynamics at different spatial scales. Journal of Animal
Ecology, 88(11), 1812–1824. https://doi.org/10.1111/1365-2656.13070
Shimizu, Y. (2022). Multiple Desirable Methods in
Outlier Detection of Univariate Data With R Source
Codes. Frontiers in Psychology, 12, 819854. https://doi.org/10.3389/fpsyg.2021.819854
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011).
False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis
Allows Presenting Anything as Significant.
Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Spurzem, L. (2017). VW 1303 von Wiking in
1:87. https://de.wikipedia.org/wiki/Modellautomobil#/media/File:Wiking-Modell_VW_1303_(um_1975).JPG
Stigler, S. M. (2016). The seven pillars of statistical wisdom.
Harvard University Press.
Transfermarkt. (2024). Die wertvollsten Fußball-Spieler. https://www.transfermarkt.de/spieler-statistik/wertvollstespieler/marktwertetop/spielerposition_id/8/page/12
van Panhuis, W. G., Grefenstette, J., Jung, S. Y., Chok, N. S., Cross,
A., Eng, H., Lee, B. Y., Zadorozhny, V., Brown, S., Cummings, D., &
Burke, D. S. (2013). Contagious Diseases in the
United States from 1888 to the Present.
New England Journal of Medicine, 369(22), 2152–2158.
https://doi.org/10.1056/NEJMms1215400
Ward, A. F., Duke, K., Gneezy, A., & Bos, M. W. (2017). Brain
Drain: The Mere Presence of One’s
Own Smartphone Reduces Available Cognitive Capacity.
Journal of the Association for Consumer Research,
2(2), 140–154. https://doi.org/10.1086/691462
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis
(Second edition). Springer.
Wickham, H. (2023). Tidy-Data-Sinnbild [Artwork].
https://r4ds.hadley.nz/data-tidy#fig-tidy-structure
Wickham, H., & Grolemund, G. (2018). R für Data Science: Daten
importieren, bereinigen, umformen, modellieren und visualisieren
(F. Langenau, Trans.; 1. Auflage). O’Reilly. https://r4ds.had.co.nz/index.html
Wilke, C. (2019). Fundamentals of data visualization: A primer on
making informative and compelling figures. O’Reilly. https://clauswilke.com/dataviz/
Wilke, C. (2024). Wilkelab/practicalgg. Wilke Lab. https://github.com/wilkelab/practicalgg
(Original work published 2019)
Wilke, S. (2013, June 26). Trends der Lufttemperatur [Bericht].
Umweltbundesamt; Umweltbundesamt. https://www.umweltbundesamt.de/daten/klima/trends-der-lufttemperatur
World Economic Forum. (2020). The Future of Jobs
Report 2020. World Economic Forum. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf