Literatur
Schlüsselwörter
Statistik, Prognose, Modellierung, R, Datenanalyse, Regression
Ainali. (2007). Standard deviation diagram micro [Artwork]. https://commons.wikimedia.org/w/index.php?curid=3141713
Anscombe, F. J. (1973). Graphs in statistical analysis. The American
Statistician, 27(1), 17–21.
Arad, C. (2024, June 5). Kylian Mbappe: Gehalt und Vermögen im
Überblick (2024). ftd.de. https://www.ftd.de/vermoegen/mbappe-gehalt-vermoegen/
Barrett, M. (2021). Ggokabeito: ’Okabe-Ito’
Scales for ’Ggplot2’ and ’ggraph’ [Manual]. https://CRAN.R-project.org/package=ggokabeito
Berger, G. (2019, December 10). The Jobs of
Tomorrow: LinkedIn’s 2020 Emerging Jobs
Report. https://www.linkedin.com/blog/member/career/the-jobs-of-tomorrow-linkedins-2020-emerging-jobs-report
Bortz, J., & Schuster, C. (2010). Statistik für
Human- und Sozialwissenschaftler.
Springer. https://doi.org/10.1007/978-3-642-12770-0
Bowne-Anderson, H. (2018). What Data Scientists Really Do,
According to 35 Data Scientists. Harvard
Business Review. https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists
Broman, K. W., & Woo, K. H. (2018). Data Organization
in Spreadsheets. The American Statistician,
72(1), 2–10. https://doi.org/10.1080/00031305.2017.1375989
Bundesamt, S. (2023-003-272023-003-27). Körpermaße nach
Altersgruppen und Geschlecht. Statistisches Bundesamt. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Gesundheitszustand-Relevantes-Verhalten/Tabellen/liste-koerpermasse.html
Bundesbank, D. (2023). Household wealth and finances in
Germany: Results of the 2021 household wealth
survey. Deutsche Bundesbank. https://www.bundesbank.de/resource/blob/908924/3ef9d9a4eaeae8a8779ccec3ac464970/mL/2023-04-vermoegensbefragung-data.pdf
Çetinkaya-Runde, M., & Hardin, J. (2021). Introduction to
Modern Statistics. https://openintro-ims.netlify.app/
Çetinkaya-Rundel, M., Diez, D., Bray, A., Kim, A. Y., Baumer, B., Ismay,
C., Paterno, N., & Barr, C. (2024). Openintro: Datasets and
supplemental functions from ’OpenIntro’ textbooks and labs. https://CRAN.R-project.org/package=openintro
Cmglee. (2015). English: Geometric visualisation of the
variance of the example distribution (2, 4, 4, 4, 5, 5, 7, 9) on
w:Standard deviation. [artwork]. https://commons.wikimedia.org/w/index.php?curid=39472834
Cohen, J. (1992). A power primer. Psychological Bulletin,
112(1), 155–159.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003).
Applied multiple regression/correlation analysis for the behavioral
sciences, 3rd ed. Lawrence Erlbaum.
Cui, B. (2024). DataExplorer: Automate data exploration and
treatment. https://CRAN.R-project.org/package=DataExplorer
DenisBoigelot. (2011). English: Redesign
File:Correlation_examples.png using vector
graphics (SVG file) [Artwork]. https://commons.wikimedia.org/w/index.php?curid=15165296
Deutscher Wetterdienst. (2025a). Regional averages DE, monthly air
temperature mean. https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/monthly/air_temperature_mean/.
Deutscher Wetterdienst. (2025b). Regional averages DE, monthly
precipitation mean. https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/monthly/precipitation/.
Downey, A. (2023). Probably overthinking it: How to use data to
answer questions, avoid statistical traps, and make better
decisions. The University of Chicago Press.
Fisher, D., & Meyer, M. (2018). Making data visual: A practical
guide to using visualization for insight. O’Reilly.
Fitzmaurice, G. (2017). Same Stats, Different
Graphs: Generating Datasets with Varied
Appearance and Identical Statistics through
Simulated Annealing. Autodesk Research. https://www.research.autodesk.com/publications/same-stats-different-graphs/
flaticon. (2024). Professor [Artwork]. https://www.flaticon.com/de/kostenlose-icons/professor
Gelman, A., Hill, J., & Vehtari, A. (2021). Regression and other
stories. Cambridge University Press.
Goren, A., Vaño-Galván, S., Wambier, C. G., McCoy, J., Gomez-Zubiaur,
A., Moreno-Arrones, O. M., Shapiro, J., Sinclair, R. D., Gold, M. H.,
Kovacevic, M., Mesinkovska, N. A., Goldust, M., & Washenik, K.
(2020). A preliminary observation: Male pattern hair loss
among hospitalized COVID-19 patients in Spain
– A potential clue to the role of androgens in
COVID-19 severity. Journal of Cosmetic
Dermatology, 19(7), 1545–1547. https://doi.org/10.1111/jocd.13443
Habitator terrae. (2021). Deutsch: Fünfjährig gemittelte
Abweichung der Lufftemperatur in
Deutschland vom langjährigem Mittel 1951 bis
1980 [diagramm]. https://commons.wikimedia.org/wiki/File:%C3%84nderung_der_Lufttemperatur_in_Deutschland.gif
Haug, S., Castro, R. P., Kwon, M., Filler, A., Kowatsch, T., &
Schaub, M. P. (2015). Smartphone use and smartphone addiction among
young people in Switzerland. Journal of Behavioral
Addictions, 4(4), 299–307. https://doi.org/10.1556/2006.4.2015.037
Hornik, K., Ligges, U., & Zeileis, A. (2023). Changes on CRAN.
The R Journal, 15, 295–296.
Horst, A. (2023). Tidy Data [Artwork]. https://allisonhorst.com/
Horst, A. (2024). Statistics Artwork [Artwork]. https://allisonhorst.com/
Hou, J., Walsh, P. P., & Zhang, J. (2015). The dynamics of
Human Development Index. The Social Science
Journal, 52(3), 331–347. https://doi.org/10.1016/j.soscij.2014.07.003
Ichihara, Y. G., Okabe, M., Iga, K., Tanaka, Y., Musha, K., & Ito,
K. (2008). Color universal design: The selection of four easily
distinguishable colors for all color vision types. Color
Imaging XIII: Processing,
Hardcopy, and Applications,
6807, 206–213. https://doi.org/10.1117/12.765420
imgflip. (2024a). Imageflip Bill Gates Meme
[Artwork]. https://imgflip.com
imgflip. (2024b). Imageflip Kermit Meme [Artwork].
https://imgflip.com
imgflip. (2024c). Imageflip Meme [Artwork]. https://imgflip.com
imgflip. (2024d). Imageflip One does not
simply [Artwork]. https://imgflip.com
imgflip. (2024e). Imageflip Tom Cruise Meme
[Artwork]. https://imgflip.com
imgflip. (2024f). Yoda Jealous Girl Friend Meme
[Artwork]. https://imgflip.com
International, T. (2017, January 25). Corruption Perceptions
Index 2016. Transparency.org. https://www.transparency.org/en/news/corruption-perceptions-index-2016
Ismay, C., & Kim, A. Y.-S. (2020). Statistical inference via
data science: A ModernDive into R and the
Tidyverse. CRC Press / Taylor & Francis Group. https://moderndive.com/
Kaplan, D. T. (2009). Statistical modeling: A fresh approach.
CreateSpace. https://dtkaplan.github.io/SM2-bookdown/
Kassambara, A. (2023). Ggpubr: ’ggplot2’ based publication ready
plots. https://CRAN.R-project.org/package=ggpubr
Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits
and attributes are predictable from digital records of human behavior.
Proceedings of the National Academy of Sciences,
110(15), 5802–5805. https://doi.org/10.1073/pnas.1218772110
Kuhn, M., Vaughan, D., & Hvitfeldt, E. (2024). Yardstick: Tidy
characterizations of model performance. https://CRAN.R-project.org/package=yardstick
Kwon, M., Kim, D.-J., Cho, H., & Yang, S. (2013). The smartphone
addiction scale: Development and validation of a short version for
adolescents. PloS One, 8(12), e83558. https://doi.org/10.1371/journal.pone.0083558
Lalwani, P., Mishra, M. K., Chadha, J. S., & Sethi, P. (2022).
Customer churn prediction system: A machine learning approach.
Computing, 104(2), 271–294. https://doi.org/10.1007/s00607-021-00908-y
Lieberoth, A., Rasmussen, J., Stoeckli, S., Tran, T., Ćepulić, D.-B.,
Han, H., Lin, S.-Y., Tuominen, J., Travaglino, G., & Vestergren, S.
(2022). COVIDiSTRESS global survey. https://doi.org/10.17605/OSF.IO/Z39US
Lovett, M. C., & Greenhouse, J. B. (2000). Applying Cognitive
Theory to Statistics Instruction. The American
Statistician, 54(3), 196–206. https://doi.org/10.1080/00031305.2000.10474545
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Wiernik, B. M., Bacher, E.,
Thériault, R., & Makowski, D. (2022). Easystats: Framework for easy
statistical modeling, visualization, and reporting. CRAN. https://doi.org/10.32614/CRAN.package.easystats
Lyon, A. (2014). Why are Normal Distributions Normal?
The British Journal for the Philosophy of Science,
65(3), 621–649. https://doi.org/10.1093/bjps/axs046
M7. (2004). Savinelli’s Italian smoking pipe
[Artwork]. https://commons.wikimedia.org/wiki/File:Pipa_savinelli.jpg
MacKay, R. J., & Oldford, R. W. (2000). Scientific
Method, Statistical Method and the
Speed of Light. Statistical Science,
15(3), 254–278. https://doi.org/10.1214/ss/1009212817
Maphry. (2009). Seesaw with mean [Artwork]. https://commons.wikimedia.org/w/index.php?curid=79390659
Marks-Anglin, Arielle and Chen, Yong. (2020). A historical review of
publication bias. Research Synthesis Methods, 11(6),
725–742. https://doi.org/10.1002/jrsm.1452
Matthews, R. (2000b). Storks Deliver Babies (p= 0.008).
Teaching Statistics, 22(2), 36–38. https://doi.org/10.1111/1467-9639.00013
Matthews, R. (2000a). Storks Deliver Babies (p= 0.008).
Teaching Statistics, 22(2), 36–38. https://doi.org/10.1111/1467-9639.00013
Menk. (2014, July 29). Linear regression [computer code]. https://texample.net/tikz/examples/linear-regression/
Messerli, F. H. (2012). Chocolate Consumption,
Cognitive Function, and Nobel Laureates.
New England Journal of Medicine, 367(16), 1562–1564.
https://doi.org/10.1056/NEJMon1211064
Mittag, H.-J., & Schüller, K. (2020). Statistik: Eine Einführung
mit interaktiven Elementen. Springer. https://doi.org/10.1007/978-3-662-61912-4
Moore, B. (2015, April 9). Recreating the vaccination heatmaps in
R. Benomics. https://benjaminlmoore.wordpress.com/2015/04/09/recreating-the-vaccination-heatmaps-in-r/
Mulukom, V. van, Muzzulini, B., Rutjens, B., Lissa, C. J. van, &
Farias, M. (2020). Psychological impact of COVID-19
pandemic. https://doi.org/10.17605/OSF.IO/TSJNB
Obels, P., Lakens, D., Coles, N. A., Gottfried, J., & Green, S. A.
(2020). Analysis of Open Data and Computational
Reproducibility in Registered Reports in
Psychology. Advances in Methods and Practices in
Psychological Science, 3(2), 229–237. https://doi.org/10.1177/2515245920918872
Oestreich, M., & Romberg, O. (2014). Keine Panik vor Statistik!:
Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge.
Springer. https://doi.org/10.1007/978-3-658-04605-7
Okabe, M., & Ito, K. (2023). Color Universal Design
(CUD) / Colorblind Barrier Free. https://jfly.uni-koeln.de/color/
Patil, I. (2021). Visualizations with statistical
details: The ’ggstatsplot’ approach.
Journal of Open Source Software, 6(61),
3167. https://doi.org/10.21105/joss.03167
Pearl, J., & Mackenzie, D. (2018). The book of why: The new
science of cause and effect. Basic Books.
Pearson, K. (1896). VII. Mathematical
contributions to the theory of evolution.—III.
Regression, heredity, and panmixia. Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 187, 253–318. https://doi.org/10.1098/rsta.1896.0007
Plesser, H. E. (2018). Reproducibility vs. Replicability:
A Brief History of a Confused Terminology.
Frontiers in Neuroinformatics, 11, 76. https://doi.org/10.3389/fninf.2017.00076
Poldrack, R. A. (2023). Statistical thinking: Analyzing data in an
uncertain world. Princeton University Press. https://statsthinking21.github.io/statsthinking21-core-site/
R Core Team. (2024). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.R-project.org/
Roser, M., Appel, C., & Ritchie, H. (2013). Human Height [Data set]. In Our World in
Data. https://ourworldindata.org/human-height
Rothstein, H. R. (2014). Publication Bias. In Wiley
StatsRef: Statistics Reference Online.
John Wiley. https://doi.org/10.1002/9781118445112.stat07071
Sauer, S. (2017). Dataset ’predictors of performance in stats
test’ [Data set]. Open Science Framework. https://doi.org/10.17605/OSF.IO/SJHUY
Sauer, S. (2019). Moderne Datenanalyse mit R: Daten einlesen,
aufbereiten, visualisieren und modellieren. Springer. https://www.springer.com/de/book/9783658215866
Scherer, C., Radchuk, V., Staubach, C., Müller, S., Blaum, N., Thulke,
H., & Kramer‐Schadt, S. (2019). Seasonal host life‐history processes
fuel disease dynamics at different spatial scales. Journal of Animal
Ecology, 88(11), 1812–1824. https://doi.org/10.1111/1365-2656.13070
Shimizu, Y. (2022). Multiple Desirable Methods in
Outlier Detection of Univariate Data With R Source
Codes. Frontiers in Psychology, 12, 819854. https://doi.org/10.3389/fpsyg.2021.819854
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011).
False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis
Allows Presenting Anything as Significant.
Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Spurzem, L. (2017). VW 1303 von Wiking in
1:87. https://de.wikipedia.org/wiki/Modellautomobil#/media/File:Wiking-Modell_VW_1303_(um_1975).JPG
Stigler, S. M. (2016). The seven pillars of statistical wisdom.
Harvard University Press.
Transfermarkt. (2024). Die wertvollsten Fußball-Spieler. https://www.transfermarkt.de/spieler-statistik/wertvollstespieler/marktwertetop/spielerposition_id/8/page/12
van Panhuis, W. G., Grefenstette, J., Jung, S. Y., Chok, N. S., Cross,
A., Eng, H., Lee, B. Y., Zadorozhny, V., Brown, S., Cummings, D., &
Burke, D. S. (2013). Contagious Diseases in the
United States from 1888 to the Present.
New England Journal of Medicine, 369(22), 2152–2158.
https://doi.org/10.1056/NEJMms1215400
Ward, A. F., Duke, K., Gneezy, A., & Bos, M. W. (2017). Brain
Drain: The Mere Presence of One’s
Own Smartphone Reduces Available Cognitive Capacity.
Journal of the Association for Consumer Research,
2(2), 140–154. https://doi.org/10.1086/691462
Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2023). Tidy-Data-Sinnbild [Artwork].
https://r4ds.hadley.nz/data-tidy#fig-tidy-structure
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source
Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., & Grolemund, G. (2018). R für Data Science: Daten
importieren, bereinigen, umformen, modellieren und visualisieren
(F. Langenau, Trans.). O’Reilly. https://r4ds.had.co.nz/index.html
Wilke, C. (2019). Fundamentals of data visualization: A primer on
making informative and compelling figures. O’Reilly. https://clauswilke.com/dataviz/
Wilke, C. (2024). Wilkelab/practicalgg. Wilke Lab. https://github.com/wilkelab/practicalgg
Wilke, S. (2013, June 26). Trends der Lufttemperatur [Bericht].
Umweltbundesamt; Umweltbundesamt. https://www.umweltbundesamt.de/daten/klima/trends-der-lufttemperatur
World Economic Forum. (2020). The Future of Jobs
Report 2020. World Economic Forum. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf